
SPRING 2024: MATH 791 HOMEWORK

The page numbers in each assignment below refer to those in the course textbooks. AAC refers to the text
Algebra: Abstract and Concrete and AFYGS refers to the text Algebra for First Year Graduate Students.

Homework 1. 1. Let G be a group. Prove the following statements:

(i) The identity element in G is unique.
(ii) Each element g has a unique inverse.

2. Write out a group table for S3, where S3 = {e, σ, σ2, τ, στ, σ2τ} are defined as in class.

3. Let G be a group. Show that G is abelian if and only if (ab)2 = a2b2, for all a, b ∈ G.

4. A k-cycle is a permutation σ ∈ Sn of the following type: There exist i1, . . . , ik ∈ X = {1, 2, . . . , n}, such
that σ(i1) = i2, σ(i2) = i3, . . . , σ(ik−1) = ik, σ(ik) = i1 and σ(j) = j, for j ∈ X\{i1, . . . , ik}. Prove that if σ
is a k-cycle, then σk = e and σj ̸= e, for all 1 ≤ j ≤ k − 1. (We are assuming k > 1.)

Homework 2. Throughout this homework set, G denotes a group. For any subsets H,K ⊆ G, we define HK
to be the set {hk | h ∈ H, k ∈ K}.
1. Let X be a set and ∼ an equivalence relation on X. For x ∈ X, let [x] denote the equivalence class of x.
Prove that for any x, y ∈ X, either [x] = [y] or [x] ∩ [y] = ∅. Conclude that the distinct equivalence classes
partition X. What can you say if X is finite and for all x ∈ X, |[x]| = r?

2. Let H ⊆ G be a subgroup. Prove that the following conditions are equivalent:

(a) H is a normal subgroup of G, i.e., gH = Hg, for all g ∈ G.
(b) gHg−1 = H, for all g ∈ G.
(c) gHg−1 ⊆ H, for all g ∈ G.
(d) ghg−1 ∈ H, for all g ∈ G and h ∈ H.

3. Prove that if H and K are subgroups of G, then HK is a subgroup if and only if HK = KH. Conclude
that if H is a normal subgroup of G, then HK is a subgroup of G.

4. Fix n ∈ Z, and set nZ := {rn | r ∈ Z}, i.e., the set of all multiples of n. Prove that:

(a) nZ is a subgroup of Z (under addition).
(b) 0 + nZ, 1 + nZ, . . . , (n− 1) + nZ are the distinct cosets of nZ in Z.

5. Let X ⊆ G be a subset. Prove that ⟨X⟩ is the intersection of all subgroups of G containing X.

Homework 3. 1. Suppose G is a group and H a subgroup. Let X denote the set of distinct left cosets of H
in G and Y denote the set of distinct right cosets of H in G. Prove that there is a a 1-1, onto function from
X to Y . Here, we do not assume the sets X and Y are finite.

2. Let K ⊆ H be subgroups of G. Prove that [G : K] is finite if and only if [G : H] and [H : K] are finite,
in which case, [G : K] = [G : H] · [H : K].

3. Let G := S3 = {e, σ, σ2, τ, στ, σ2τ}, H := ⟨σ⟩, and K := ⟨τ⟩, with our usual notation. Show that, as
subsets of G: (τH) · (τH) = H and (σK) · (σK) ̸= σ2K. Be sure to write final answers in terms of our
established notation for S3.

Homework 4. 1. Let ϕ : G1 → G2 be a group homomorphism. Show that ϕ is 1-1 if and only if the kernel
of ϕ is {e1}.
2. Let G be a group. The center of G, denoted Z(G), is the set Z(G) := {z ∈ G | zg = gz, for all g ∈ G}.
For example, K := {−1, 1} is the center of Q8. Prove:

(i) Z(G) is a normal subgroup of G.
(ii) If G/Z(G) is cyclic, then G is an abelian group.
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(iii) Give an example to show that if K ⊆ G is normal and G/K is cyclic, then G need not be abelian.

3. Let N be a normal subgroup of the group G. Show that if aN = cN and bN = dN , for a, b, c, d ∈ G, then
abN = cdN . This shows that if we define a binary operation * on the set of left cosets by (aN)∗(bN) = abN ,
then this operation is well-defined.

4. Let G = ⟨a⟩ be a cyclic group. Suppose H ⊆ G is a subgroup. Prove that H is a cyclic group. Hint:
consider ar, where r is the least positive integer such that ar ∈ H.

5. Let G be a group and e ̸= a ∈ G. We say that a has finite order if an = e, for some n ≥ 2. The order of
a is the least positive integer r such that ar = e, and we write o(a) = r. Prove the following statements:

(i) If a has finite order, then there exists a least positive integer r such that ar = e.
(ii) If o(a) = r, then r divides any n satisfying an = e.
(iii) If o(a) = r, then ⟨a⟩ = {e, a, a2, . . . , ar−1}. In particular, o(a) = |⟨a⟩|.

Homework 5. 1. Let ϕ : G1 → G2 be a surjective group homomorphism. Prove that if G1 = ⟨X⟩, for X a
subset of G1, then G2 = ⟨ϕ(X)⟩.

2. Find all group homomorphisms from Z3 to itself.

3. An automorphism of the group G is a 1-1, onto group homomorphisms from G to itself. Prove that the
set Aut(G) of automorphisms of G forms a group under composition.

4. Fix g ∈ G. Prove that ϕ : G → G defined by ϕ(x) = g−1xg, for all x ∈ G is an automorphism of G. Such
a map is called an inner automorphism of G.

5. Describe the automorphism groups of Z8 and Z12.

Homework 6. 1. Let H,K be subgroups of the group G such that K is normal in G. Prove that (HK)/K
is isomorphic to H/(H ∩K).

2. Show that every element in S4 can be written as a finite product of elements from the set {σ, τ} where
σ = (1, 2) and τ = (1, 2, 3, 4).

3. List all subgroups of S4 having four elements.

4. Suppose τ ∈ Sn is a k-cycle and γ ∈ Sn is an s-cycle. Prove that if τ and γ are disjoint, then the order
of γτ is the least common multiple of k and s.

Homework 7. Throughout this assignment Sn denotes the symmetric group acting on Xn = {1, 2, . . . , n}.

1. Recall that if G is any group and g ∈ G, then multiplication by g gives a 1-1, onto function from G to
itself. That is, multiplication by g permutes the elements of G. Now, let G := {g1, g2, . . . , gn} be a group of
order n. Define ϕ : G → Sn as follows. For g ∈ G, ϕ(g) = σg, where σg(i) = j if and only if ggi = gj . In

other words, σg permutes the set X according to the multiplication map G
·g−→ G. Prove Cayley’s Theorem

by showing that ϕ is an injective group homomorphism. In other words, any finite group is isomorphic to a
subgroup of Sn, for some n ≥ 1.

2. Write out the elements of S4 having order four in terms of their cycle decomposition. What is the largest
order of an element of S4? What is the largest order of an element in S5?

3. Let p be a prime. Show that an element in Sn has order p if and only if it can be written as a product of
disjoint p-cycles. Give an example to show that this is false if p is not a prime.

4. Elements x and y in a group G are said to be conjugate, if there exists g ∈ G such that gxg−1 = y. Let
τ = (i1, . . . , ik) be a k-cycle in Sn (k ≤ n).

(i) For γ ∈ Sn, show that γτγ−1 = (γ(i1), . . . , γ(ik)). In other words, the conjugate of a k-cycle is a
k-cycle.

(ii) Let σ ∈ Sn be any k-cycle. Show that σ is a conjugate of τ .
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Conclude that the set of all k-cycles equals the set of all conjugates of τ .

Homework 8. 1. Show that N := {e, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is a normal subgroup of A4. Hint:
Use Problem 4 from Homework 7.

2. Suppose n ≥ 3 and σ ∈ Sn. Show there exists τ ∈ Sn such that στ ̸= τσ, i.e., the center of Sn is trivial.

3. Prove the statements below to establish the following fact: For n ≥ 5, An is the only non-trivial normal
subgroup of Sn.

(i) Let G be a group and A,B normal subgroups of G. Show that A∩B is a normal subgroup. Conclude
that if A is a simple group, then A ∩B = {e}.

(ii) Suppose G is a group and A ⊆ G is a normal subgroup of index two. Let B ⊆ G be a normal
subgroup. Show that if A is a simple group, then B must have order two. (Hint: For b1, b2 ∈ B,
consider the cosets b1A and b2A. )

(iii) Let G be a group and B = {e, b} a normal subgroup of order two. Then b ∈ Z(G), the center of G.
(iv) Suppose G is a group, and A ⊆ G is a normal subgroup of index two. Show that if A is a simple

group and Z(G) = {e}, then A is the only proper normal subgroup of G.

Conclude that An is the only proper normal subgroup of Sn, for n ≥ 5.

Homework 9. 1. Let Y be a set with n elements and SY denote the group of one-to-one onto functions
from Y to itself, with composition of functions for the binary operation. Show that SY is isomorphic to Sn,
where, Sn, as defined in class, is the set of one-to-one onto functions from X = {1, 2, . . . , n} to itself. Thus,
when working with Sn are are free to think of Sn as the group of permutations of any particular set with n
elements.

2. In class, we showed that if the group G acts on the set X, with |X| = n, then there is a group
homomorphism ϕ : G → Sn. Prove the converse by showing that if ϕ : G → Sn is a group homomorphism,
then G acts on any set X := {x1, . . . , xn} by showing that the product g · xi := xϕ(g)(i) gives an action of
G on X. Thus, to give an action of a group G on a set with n elements is equivalent to giving a group
homomorphism from G to Sn.

3. Let G be a group and suppose ϕ : G → Gln(R) is a group homomorphism. Let X denote Rn, written as
column vectors. Show that G acts on X via ϕ. A group homomorphism from G to Gln(R) is called a group
representation..

4. Let G act on the set X. For x, y ∈ X, define x ∼ y if and only if y = gx, for some g ∈ G. Show that
∼ is an equivalence relation on X. For x ∈ X, the equivalence class of x is called the orbit of x. Thus, the
distinct orbits of G acting on X partition X.

Homework 10. 1. Recalling that if G acts on a set X with n elements, there exists a group homomorphism
ϕ : G → Sn, find an explicit group homomorphism from Z2 × Z2 → S4.

2. Let Q8 act on itself via left multiplication. Use this action to find an explicit group homomorphism from
Q8 to S8. Now find two elements in S8 that generate a subgroup isomorphic to Q8.

3. A group G acts transitively on the set X if there is just one orbit under the action. Suppose H is a
subgroup of G, X is the set of left cosets of H and G acts via left translation on X. Show that: (a) The
action is transitive and (b) GH = H.

4. Find all conjugacy classes in Q8 and A4.

5. If G is a group and [G : Z(G)] = n, show that |c(g)| ≤ n, for all g ∈ G.

Homework 11. 1. Let G be a group of order p2, p a prime. Prove that G is isomorphic to Zp2 or Zp × Zp.

2. Prove that a group G of order thirty having a subgroup H of index five is not a simple group. (Hint: Let
G act on the left cosets of H).

3. Prove that the center of Sn is {id}, for n ≥ 3.

4. Let G be a finite group and x1, . . . , xn ∈ G representatives of the distinct conjugacy classes of G. Show
that G is abelian if xixj = xjxi, for all 1 ≤ i ̸= j ≤ n.

5. Show that ⟨(1, 2), (1, 2, . . . , n)⟩ = Sn.
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Homework 12. Let S be any ring and R denote the ring of 2 × 2 matrices over S. Prove that I ⊆ R is a
two-sided ideal if and only if there exists a two-sided ideal J ⊆ S such that I = M2(J).

2. Let R be a ring and X ⊆ R be a subset. Define ⟨X⟩, the two-sided ideal generated by X to be the
intersection of all two-sided ideals of R containing X. First, show that ⟨X⟩ is a two-sided ideal of R
containing X and then show ⟨X⟩ is the set of all finite expressions of the form r1x1s1 + · · ·+ rnxnsn, with
each ri, sj ∈ R and xi ∈ X.

3. Let R and S be rings. Let R× S denote {(r, s) | r ∈ R and s ∈ S}.
(i) Show that R× S is a ring under coordinate-wise addition and multiplication.
(ii) Show that K ⊆ R× S is a two-sided ideal if and only if K = I × J , for I a two-sided ideal in R and

J a two-sided ideal in S.

4. Let R be a commutative ring. An element e ∈ R is called an idempotent if e2 = e. We say that e is a
non-trivial idempotent if e ̸= 0, 1.

(i) Suppose that e ∈ R is a non-trivial idempotent. Show that 1 − e is also a non-trivial idempotent
and e · (1− e) = 0.

(ii) Show that Re is both an ideal and a ring. Similarly for R(1− e).
(iii) Show that Re ∩R(1− e) = 0.
(iv) Show that R is isomorphic to Re×R(1− e) as rings.

Homework 13. 1. Let R be a ring and I ⊆ R a two-sided ideal. Give complete proofs showing that there is a
one-to-one correspondence between the right (respectively, left, respectively two-sided) ideals of R containing
I and right (respectively, left, respectively two-sided) ideals of R/I. Conclude that every right (respectively,
left, respectively two-sided) ideal of R/I is of the form J/I for some right (respectively, left, respectively
two-sided) ideal of R containing I.

2. Suppose J ⊆ I are two-sided ideals in the ring R. Prove that (R/J)/(I/J) and R/I are isomorphic as
rings.

3. Suppose I, J are two-sided ideals in the ring R. Show that I ∩J and I+J := {i+ j | i ∈ I and j ∈ J} are
two-sided ideals, and that there is an injective ring homomorphism ϕ : R/(I ∩ J) → R/I × R/J . Suppose
R is commutative. Can you think of a sufficient condition on I and J that guarantees that ϕ is surjective?
(Hint: If you know it, consider a ring version of the Chinese Remainder Theorem.)

4. Let R be a ring and I, J,K be two-sided ideals. Define IJ := ⟨X⟩, where X := {ij | i ∈ I and j ∈ J}.
(i) Show that IJ is a two-sided ideal.
(ii) Show that I · (J +K) = IJ + IK.
(iii) Show that if, in addition, R is commutative, I + J = R implies I ∩ J = IJ .

Homework 14. 1. Let F be a field. Give a complete proof of the fact that every monic polynomial with
coefficients in F can be factored uniquely as a product of monic, irreducible polynomials with coefficients in
F . Hint: Just follow the steps used to prove the Fundamental Theorem of Arithmetic.

2. Prove that repeated applications of the division algorithm can be used to find the GCD of a, b ∈ Z, and
that backwards substitution with the system of equations generated by this process gives m,n ∈ Z such that
GCD(a, b) = ma+ nb. This process is called the Euclidean algorithm.

3. Use the Euclidean algorithm to find GCD(120, 54) and write the GCD as an integer combination of 120
and 54 as in Bezout’s Principle.

Homework 15. In this assignment, you will verify that the ring R = Z[
√
−5] := {a+ b

√
−5 | a, b ∈ Z} does

not have the unique factorization property. The norm from R is Z is defined as follows: For x = a+ b
√
−5,

N(x) := a2 + 5b2.

1. Show that N(xy) = N(x)N(y), for all x, y ∈ R.

2. Use the norm to describe the units in R.

3. Show that 3, 2 +
√
−5, 2 +

√
−5 are irreducible elements in R.
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4. Use the equation 3 · 3 = (2 +
√
−5) · (2 −

√
−5) to show that 3, 2 +

√
−5, 2 −

√
−5 are not prime in R.

Conclude that R does not have the unique factorization property.

5. Show that the ideal of R generated by 3 and 2 +
√
−5 is not a principal ideal, i.e., there does not exist

f ∈ R such that ⟨3, 2 +
√
−5⟩ = ⟨f⟩.

Homework 16. Throughout this assignment, R is an integral domain. The first three problems show that we
can construct a field containing R in the exact manner that the rational numbers are constructed from the
integers. Recall, that formally speaking, the rational numbers are the set of equivalence classes of ordered
pairs (a, b) of integers (with b ̸= 0) such that (a, b) is equivalent to (c, d) if and only if ad = bc. Of course,
we denote the equivalence class of an ordered pair (a, b) as a/b.

1. Let Q denote the set of ordered pairs (a, b) with a, b ∈ R and b ̸= 0. For (a, b), (c, d) ∈ Q, define
(a, b) ∼ (c, d) if and only if ad = bd in R. Show that ∼ is an equivalence relation.

2. Let K denote the set of equivalence classes under the equivalence relation in 1. Temporarily using [(a, b)]
to denote the equivalence class of (a, b), define addition and multiplication of elements in K as follows:

[(a, b)] + [(c, d)] := [(ad+ bc, bd)] and [(a, b)] · [(c, d)] = [(ac, bd)].

Show that addition and multiplication in K are well defined.

3. Show that K is a field under the operations above and that the set of elements in K of the form [(a, 1)]
is a subring of K isomorphic to R. The field K is called the quotient field of R or fraction field of R.

Remark. Henceforth we will write the elements of K as a/b, rather and [(a, b)] and an element a ∈ R either
as a or a/1 and regard R as a subring of K. Note then that a/b+ c/d = (ad+ bc)/bd and a/b · c/d = ac/bd,
as expected.

4. Let L be a field containing R. Show that L contains K (or at least an isomorphic copy of K). Thus, in
this sense, K is the smallest field containing R.

5. Let A be an m × n matrix with entries in R satisfying m < n. Set x :=

x1

...
xn

, and 0 :=

0...
0

. Use

standard facts from linear algebra to show that the homogeneous system of equations A ·x = 0 has infinitely
many solutions over R (assuming R is infinite).

Homework 17. Let R be an integral domain. In what follows, a, b, c, d, e, f ∈ R will be non-zero, non-unit
elements. Given a, b ∈ R, d ∈ R is said to be a greatest common divisor, or GCD, of a and b if the following
conditions hold:

(i) d | a and d | b
(ii) Whenever e | a and e | b, then e | d.

Use this definition to prove the following problems.

1. Show that if GCDs exist, they are unique up to a unit multiple.

2. Suppose d1 is a GCD of ab and ac, and d2 is a GCD of b and c. Prove that, d1 is a unit multiple of ad2.
Use this to show that if d is a GCD of a and b, then 1 is a GCD of a

d and b
d .

3. Show that if 1 is a GCD of a and b and 1 is also a GCD of a and c, then 1 is a GCD of a and bc.

4. Show that if R is a PID, and a, b ∈ R, then d is a GCD of a and b if and only if ⟨a, b⟩ = ⟨d⟩. In particular,
every two non-zero, non-units have a GCD, and if d is a GCD of a and b, then d = ra+sb, for some r, s ∈ R.

5. Let R = Q[x, y] be the polynomial ring in two variables over Q. Show that 1 is a GCD of x and y, but
there is no equation of the form 1 = f · x+ g · y, for f, g ∈ R.

Homework 18. The problems in this homework set deal with a special kind of PID. Let R be a principal
ideal domain with the property that, given any two prime elements, π1 and π2, ⟨π1⟩ = ⟨π2⟩, i.e., up to
unit multiple, there is just one prime element, say π ∈ R. Such a ring is is called a discrete valuation ring,
denoted DVR, and π ∈ R is called a uniformizing parameter.
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1. Fix a prime p ∈ Z. Let R denote the set of rational numbers whose denominator is not divisible by p.
First show that R is a subring of Q, and then show that R is a DVR with uniformizing parameter p.

2. Let R be a DVR with uniformizing parameter π ∈ R. Show that
⋂

n≥1⟨πn⟩ = 0.

3. Let R be a DVR with uniformizing parameter π ∈ R. Show that every element in R can be written
uniquely as uπn, for some n ≥ 0 and u ∈ R a unit. Conclude that if K denotes the quotient field of R, then
every element in K can be written uniquely in the form uπn, for some n ∈ Z and u ∈ R, a unit.

4. Let R be a DVR with uniformizing parameter π ∈ R, and quotient field K. Define v : K → Z ∪ {∞} by
v(0) = ∞ and for α ̸= 0, v(α) = n, where α ∈ K and α = uπn, as in 3. Show that for all α, β ∈ K:

(i) v(α+ β) ≥ min{v(α), v(β)}
(ii) v(αβ) = v(α) + v(β).

Observe that R = {α ∈ K | v(α) ≥ 0}.

5. Let K be a field. Suppose v : K → Z ∪ {∞} is a function such that for all α, β ∈ K :

(i) v(α) = ∞ if and only if α = 0
(ii) v(α+ β) ≥ min{v(α), v(β)}
(iii) v(αβ) = v(α) + v(β).

Such a function is called a discrete valuation on K. We assume that v takes values other than 0 and ∞. Set
R := {α ∈ K | v(α) ≥ 0}. Prove that R is DVR by following the steps below.

(i) Show that u ∈ R is a unit if and only if v(u) = 0. Hint: First show v(1) = 0.
(ii) Show there exist elements r ∈ R, with v(r) > 0.
(iii) Prove that if r ∈ R, and v(r) > 0, then as an element of K, v( 1r ) = −v(r).
(iv) Suppose c := min{v(r) | r ∈ R and v(r) > 0}. Show that the image of v is cZ.
(v) Show that if π ∈ R and v(π) = c, then R is a DVR with uniformizing parameter π.

Homework 19. Throughout this assignment R denotes a commutative ring.

1. Let I ⊆ R be an ideal, and R[x] denote the polynomial ring in x over R. Let I[x] denote the set of
polynomials in R with coefficients in I and let ⟨I⟩ denote the ideal of R[x] generated by the set I. Show
that I[x] = ⟨I⟩.

2. Maintaining the notation from 1, show that the rings R[x]/I[x] and (R/I)[x] are isomorphic.

3. Let R[[x]] denote the formal power series ring over R, i.e., the set of expressions of the form Σ∞
i=0aix

i,
with ai ∈ R. Note this is purely an algebraic expression and does not involve any notion of convergence.
We add and multiply elements of R[[x]] in the expected way: If f = Σ∞

i=0aix
i and g = Σ∞

i=0bix
i, then:

f+g = Σ∞
i=0(ai+bi)x

i and fg = Σ∞
k=0ckx

k, where ck = Σi+j=kaibj . For I ⊆ R let I[[x]] denote the elements
in R[[x]], all of whose coefficients belong to I.

(i) Verify that R[[x]] is a ring and I[[x]] is an ideal of R[[x]] and R[[x]]/I[[x]] ∼= (R/I)[[x]].
(ii) Show that if I is finitely generated, then ⟨I⟩ = I[[x]] as ideals of R[[x]].
(iii) Can you give an example where I[[x]] ̸= ⟨I⟩?

Here is Eisenstein’s Criterion, which is an important test for irreducibility of polynomials over a UFD.

Eisenstein’s Criterion. Let R be a UFD with quotient field K. Suppose f(x) = anx
n + · · ·+ a0 ∈ R[x] is

a primitive polynomial. Let p ∈ R be a prime element and suppose: (i) p | ai, for all 0 ≤ i < n, (ii) p ∤ an,
and (iii) p2 ∤ a0. Then f(x) is irreducible over K (equivalently, over R). For example, x6 + 10x2 + 5x + 15
is irreducible over Q, by using Eisenstein’s criterion and p = 5.

4. Let p ∈ Z be prime and fp(x) = xp−1 + xp−2 + · · · + x + 1 ∈ Z[x]. Use Eisenstein’s criterion, together
with the following fact to show that fp(x) is irreducible over Q[x]: fp(x) is irreducible over Q if and only if
fp(x+ 1) is irreducible over Q.

5. Use Eisenstein’s criterion and the fact that Q[x] is a UFD to show that x2+y2−9 is irreducible in Q[x, y].

Homework 20. Throughout this assignment, R is a commutative ring.
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1. An ideal P ̸= R is said to be a prime ideal if for a, b ∈ R, whenever ab ∈ P , then a ∈ P or b ∈ P . Prove
that P is a prime ideal if and only if R/P is an integral domain.

2. An ideal M ̸= R is a maximal ideal if whenever J ⊆ R is an ideal satisfying M ⊆ J ⊆ R, then J = M or
J = R. In other words, M is maximal among the proper ideals of R. It follows from Zorn’s Lemma, that if
I ⊊ R is an ideal, then there exists a maximal ideal M ⊆ R with I ⊆ M . In particular, every commutative
ring has at least one maximal ideal. Prove that M is a maximal ideal if and only if R/M is a field. Conclude
that every maximal ideal is a prime ideal, and give an example of a prime ideal that is not a maximal ideal.

3. Let R be a commutative ring. Ideals I, J ⊆ R are said to be comaximal if I + J = R. Prove that I and
J are comaximal if and only if there is no maximal ideal M containing both I and J .

4. Suppose I, J are comaximal ideals in the commutative ring R. Show that I ∩ J = IJ .

5. For I and J as in 4, prove that that the natural map ϕ : R → (R/I)× (R/J) given by ϕ(r) = (r+I, r+J)
is a surjective ring homomorphism whose kernel equals I ∩ J . Conclude that R/IJ ∼= (R/I)× (R/J). When
R = Z, this isomorphism is one version of the Chinese remainder theorem.

Homework 21. Suppose F ⊆ K are fields. We will write [K : F ] to denote the dimension of K as a vector
space over F .

1. Prove that 1, 3
√
2, 3

√
4 ∈ Q( 3

√
2) are linearly independent over Q. Thus, [Q( 3

√
2) : Q] = 3.

2. Find the multiplicative inverse of 1 + 2 3
√
2 in Q( 3

√
2).

3. Can you write down the multiplicative inverse of 1 + 3
√
2+ 3

√
4 in Q( 3

√
2) without doing any calculations?

4. Let F := Q(
√
2). Define K := F (

√
3) to be the set {a+ b

√
3 | a, b ∈ F}. Show that [K : F ] = 2. Can you

guess [K : Q] ? If so, give a proof validating your guess.

5. Let p(x) = x2 + x+ 1 ∈ Z2[x].

(i) Show that p(x) is irreducible over Z2.
(ii) Show that the commutative ring Z2[x]/⟨p(x)⟩ has just four elements.
(iii) Prove that the ring Z2[x]/⟨p(x)⟩ is a field.

Homework 22. 1. Let F ⊆ K be fields and U := {u1, . . . , ur} a subset of K. Define F (U) to be the
intersection of all subfields of K containing F and U . We also denote this intersection as F (u1, . . . , ur).

(i) Show that F (U) is the smallest subfield of K containing F and U .
(ii) Show that

F (U) = {a(u1, . . . , ur)b(u1, . . . , ur)
−1 | a(x1, . . . , xr), b(x1, . . . , xr) ∈ F [x1, . . . , xr] with b(u1, . . . , ur) ̸= 0}.

2. Suppose U = {u} in problem 1 and u is algebraic over F . Reconcile the description of F (u) in problem 1
with the description of F (u) from the lecture of March 27.

3. Maintaining the notation from problem 1.

(i) Suppose r = 2. Show that F (u1, u2) = F (u1)(u2).
(ii) Let X1 ∪ · · · ∪Xs (with s ≤ t) be a partition of U . Prove that F (U) = F (X1)(X2) · · · (Xs).

3. Maintaining the notation from problem 1, we say that u1, . . . , ur ∈ K are algebraically independent
over F of p(u1, . . . , ur) ̸= 0, for all polynomials p(x1, . . . , xr) ∈ F [x1, . . . , xr]. Show that if u1, . . . , ur are
algebraically independent over F , then F (u1, . . . , un) is isomorphic to the quotient field of F [x1, . . . , xr], i.e.,
the rational function field in r variables over F .

Homework 23. 1. Show that p(x) = x3 + x2 + 2x+ 1 is irreducible over Z3.

2. For p(x) as in the previous problem, from class we know that there is a field K containing Z3 and α ∈ K
such that p(α) = 0.

(i) How many elements are in the field Z3(α)?
(ii) In the field Z3(α) calculate A ·B and A−1, for A := 1 + 2α+ α2 and B := 2 + α+ 2α2.
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3. Given an example of a field with 125 elements.

4. Fix a prime p. Assume that for all n ≥ 1, there exists an irreducible polynomial in Zp[x] having degree
n. Show that for all primes p and n ≥ 1, there exists a field with pn elements.

5. Let α ∈ K ⊇ Z2 be a root of x2 + x+ 1. Show that Z2(α) is splitting field of x2 + x+ 1 over Z2.

Homework 24. 1. Write out addition and multiplication tables for the field Z2(α) in problem 5 of the
previous assignment.

2. Now let p(x) and α be as in problems 1 and 2 from Homework 23. Determine whether or not Z3(α) is
the splitting field for p(x) over Z3.

3. Let α be a root of the irreducible polynomial x2 + x + 2 ∈ Z3[x]. Show that Z3(α) is its splitting field
over Z3 and Z3(α) is a field with nine elements.

4. Let p, q ∈ Z be distinct prime numbers. Show that [Q(
√
p,
√
q) : Q] = 4.

5. Let n ≥ 2 and set ϵ := e
2πi
n .

(i) Show that Q(ϵ) is the splitting field for xn − 1 over Q.
(ii) If n = p is prime, find [Q(ϵ) : Q]. Hint: First make an educated guess for the minimal polynomial of ϵ

over Q, then show that the function ϕ : Q[x] → Q[x] given by ϕ(f(x)) = f(x+1) is an automorphism,
and then apply Eisenstein’s criterion.

Homework 25. 1. Consider α := 1 +
√
2 +

√
3 +

√
6 ∈ Q(

√
2,
√
3). Find a polynomial p(x) ∈ Q[x] such that

p(α) = 0. Determine if the polynomial you found is the minimal polynomial for α over Q.

2. Prove that for any field L containing Zp and a, b ∈ L, then (a+ b)p = ap + bp.

3. Let x, y be indeterminates over the field Z2. Set F := Z2(x
2, y2) and K := Z2(x, y). Set E := Z(x, y2).

Prove that [E : F ] = 2 and [K : E] = 2. Conclude that [K : F ] = 4.

4. In the notation of problem 3, prove that α2 ∈ F , for all α ∈ K.

5. Use the previous two problems to show that for F ⊆ K as in problem 3, there does not exist α ∈ K such
that K = F (α). Conclude that there are infinitely many intermediate fields F ⊊ E ⊊ K.

Homework 26. 1. Construct a field K with 16 elements, and identify explicitly a subfield with 4 elements.
Hint: Start by finding an irreducible polynomial of degree four over Z2.

2. For K as in problem 1, is there a subfield of K with 8 elements?

3. Let K be a field with pm elements, with p prime and m ≥ 1. Let σ : K → K be given by σ(α) = αp, for
all α ∈ K. Show that σ is an automorphism of K fixing Zp. We call σ the Frobenius automorphism of K.

4. For K and σ as in problem 3, what is σj(α), for j ≥ 1 and α ∈ K? What is σm?

5. Let K and σ be as in problem 3. Suppose n | m. Show that F := {α ∈ K | σn(α) = α} is the unique
subfield of K containing pn elements.

Homework 27. Let F ⊆ K be an extension of fields, and write Gal(K/F ) for the set of automorphisms of K
fixing F , i.e., if σ ∈ Gal(K/F ), then σ is an automorphism of K and σ(λ) = λ, for all λ ∈ F .

1. Show that Gal(K/F ) is a group.

2. Show that if f(x) ∈ F [x], α ∈ K satisfies f(α) = 0, then f(σ(α)) = 0, for all σ ∈ Gal(K/F ).

3. Show that if K = F (α), for α ∈ K a primitive element, then Gal(K/F ) is finite. In particular, if F ⊆ K
is a finite extension, with Q ⊆ F , then Gal(K/F ) is a finite group.

Homework 28. Prove the following statements about finite fields. You may use the following fact: Let F be
a field and f(x) ∈ F [x] a non-constant polynomial. If f(x) and f ′(x) are relatively prime, then f(x) has
distinct roots in its splitting field.

(i) If F is a finite field, then |F | = pn, for some prime p and and integer n ≥ 1. Moreover F contains a
subfield isomorphic to Zp.
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(ii) Given a prime p and an integer n ≥ 1, there exists a field F with pn elements, namely the splitting
field of xpn − x over Zp. Prove this by showing that F turns out to be the set of distinct roots of

xpn − x.
(iii) If F is a field with pn elements, then F is a splitting field for xpn − x over Zp. Conclude that any

two fields with pn elements are isomorphic (since any two splitting fields for the same polynomial
over the same base field are isomorphic, a fact we have not yet established in class).

(iv) Suppose F ⊆ K are finite fields with |F | = pn and |K| = pm. Then n | m. Conversely, if K is a field
with pm elements and n | m, then there exists a subfield F ⊆ K with |F | = pn.

(v) If K is a finite field with |K| = pm, then there is a unique subfield F of K with |F | = pn, for all n
dividing m.

Homework 29. 1. For K := Q(
√
2,
√
3), use the Crucial Proposition from the lecture of April 12 to calculate

Gal(K/Q). Use your answer to find all of the roots to p(x) = x4 − 10x2 + 1. Hint: From class, you already
know one of the roots of p(x).

2. Let γ ∈ C be a primitive 8th root of unity (e.g., e
2πi
8 ) and set K := Q(γ). Find (with proof) the minimal

polynomial of α

3. Let γ ∈ C be a primitive 8th root of unity (e.g., e
2πi
8 ) and set K := Q(γ). Find Gal(K/Q).

4. Write out a group table for the Galois group you found in problem 3.

5. For K as in problem 2, set α := γ + γ2. Find the minimal polynomial p(x) for α over Q and all of the
roots of p(x).

Homework 30. 1. Let F be a field and f(x) ∈ F [x] be a non-constant polynomial. Prove that f(x) and f ′(x)
have no common factor in F [x] if and only if f(x) has distinct roots in its algebraic closure F

2. Let ϵ ∈ C be a primitive nth root of unity, e.g., ϵ = e
2πi
n . The minimal polynomial for ϵ over Q is called

the nth cyclotomic polynomial and is denoted Φn(x). It is a standard fact that Φn(x) has integer coefficients
and degree ϕ(n), the Euler totient function.

(i) Show that Q(ϵ) is a splitting field for xn − 1 over Q.
(ii) By definition, γ ∈ C is a primitive nth root of unity if and only if γn = 1 and γr ̸= 1 for r < n.

Prove that: ϵi is a primitive nth root of unity if and only if i and n are relatively prime if and only
if ⟨ϵi⟩ = ⟨ϵ⟩ and that this accounts for all primitive nth roots of unity.

(iii) Prove that the distinct roots of Φn(x) are the primitive roots of unity.
(iv) Prove that Gal(Q(ϵ)/Q) ∼= (Zn)

∗, the multiplicative group of units in the ring Zn.
(v) Show that xn − 1 =

∏
d|n Φd(x).

(vi) Use (v) and induction to prove that Φn(x) ∈ Z[x], for all n ≥ 1.

Homework 31. 1. Let F ⊆ K be an arbitrary (i.e., not necessarily finite) algebraic extension. Show that
any field homomorphism σ : F → F extends to a field homomorphism σ̂ : K → F . Note that a field
homomorphism is automatically one-to-one. Hint: Use Zorn’s Lemma together with the Crucial Proposition
from April 12.

2. Use the previous problem to show that any two algebraic closures of the field F are isomorphic.

Homework 32. 1. Let ϵ be a primitive 5th root of unity. Find all of the subgroups of the Galois group of the
extension Q ⊆ Q(ϵ) and the corresponding fixed fields.

2. Let K := Q(
√
2,
√
3,
√
5). Show that [K : Q] = 8 and Gal(K/Q) = Z2 × Z2 × Z2. Then use the Galois

correspondence theorem to find all intermediate fields between QandK. Hints: (i) It may be more convenient
to write the Galois group multiplicatively, rather than additively. (ii) If A,B are abelian groups, there may
be more subgroups than just subgroups of the form H×K, where H is a subgroup of A and K is a subgroup
of B.
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